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We show the applicability of vertex component analysis (VCA) of hyperspectral CARS images in generating a similar contrast
profile to that obtained in “multimodal imaging” that uses signals from three separate nonlinear optical techniques. Using an
atherosclerotic rabbit aorta test image, we show that the VCA algorithm provides pseudocolor contrast that is comparable to
multimodal imaging, thus suggesting that under certain conditions much of the information gleaned from a multimodal nonlinear
optical approach can be sufficiently extracted from the CARS hyperspectral stack itself. This is useful for unsupervised contrast
generation on hyperspectral CARS implementations such as multiplex CARS that may not have multimodal capabilities. The utility

of VCA as a quantitative analysis tool in CARS is also addressed.

1. Introduction

The importance of nonlinear optical microscopy techniques
based on vibrational resonances has rapidly grown over the
past decade. At the forefront of this set of imaging tools is
Coherent Anti-Stokes Raman Scattering (CARS) Microscopy
[1-4]. As depicted schematically in Figure 1, CARS is a
four-wave mixing process involving the interaction of pump
(w,,), Stokes (w;), and probe (w,,) photons to yield a higher
energy anti-Stokes photon (w,), the production of which is
stimulated in a sample when the difference of the pump and
Stokes angular frequencies matches a vibrational resonance
(wg = w,, —w;). Thus, CARS is a label-free imaging technique
with broad chemical specificity. The stimulated nature of
this nonlinear optical process means that in a wide range
of conditions CARS signals are orders of magnitude larger
than those from traditional spontaneous Raman scattering
[5]. Therefore, a primary advantage of CARS as a microscopic
technique lies in vastly improved image acquisition times.
While traditional CARS microscopy research laid the foun-
dation for it as a powerful contrast-based (i.e., qualitative)
technique, there has been a considerable recent thrust to
develop the quantitative aspects of this and other coherent
Raman microscopy techniques [6-10].

Traditionally, CARS microscopy has been implemented
using pulsed picosecond lasers which are optimal for
this technique because the picosecond pulse bandwidth
closely matches the Raman linewidths of relevant molecu-
lar resonances [11, 12]. However, pulsed femtosecond laser
approaches to CARS are currently popular for various rea-
sons including the fact that their high peak powers enable
“multimodal” operation that simultaneously integrates CARS
with other nonlinear optical imaging tools such as second
harmonic generation (SHG) and two-photon excitation flu-
orescence (TPEF), among others, to provide unique contrast
information [13]. SHG, for example, is sensitive to noncen-
trosymmetric molecular assemblies such as collagen, and
TPEF can map endogenous fluorescent molecules such as
elastin. Figure 2(a) shows such a multimodal image of an
atherosclerotic rabbit aorta sample.

Another primary advantage of femtosecond-laser-based
approaches to CARS lies in their inherently broadband pulses
which allow for better harnessing of the spectroscopic power
of vibrational imaging. The combination of spectroscopy and
microscopy, termed “hyperspectral imaging,” can provide
spectral information at every pixel with a multitude of unique
chemically specific contrasts. Figure 2(b) represents a single
image from a hyperspectral CARS stack from a sample of
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FIGURE 1: Energy level diagram of the CARS process. w,,, @, @,,,

w,,, and wy are the pump, Stokes, probe, anti-Stokes, and Raman
vibrational mode frequencies, respectively.
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atherosclerotic rabbit aorta tissue, with two representative
spectra shown for a bright and a dark pixel. Typically, contrast
is achieved either by on-peak (i.e., single frequency) imaging,
as shown in this figure, or by comparing ratiometric differ-
ences in two or more peaks in the spectra that are diagnostic
of the molecule being probed [14, 15]. There is a growing
sense, however, that single- or few-frequency analysis of
hyperspectral CARS images makes insufficient use of the
rich spectral information inherent to the technique. Thus,
more sophisticated spectral analysis tools—largely based
on multivariate analysis (MVA) techniques—are currently
gaining in prominence [16-18].

Multivariate analysis is a mainstay in “‘chemometrics”
and is increasingly being used for vibrational imaging of
biological samples [7, 14, 16, 18]. For Raman and infrared
absorption microscopy, MVA is used primarily for qualitative
chemical identification using colormaps. By contrast, CARS
and other coherent Raman microscopy techniques have faster
acquisition rates that provide impetus for its use not only
for qualitative contrast but also for quantitative concentra-
tion measurements that are useful for monitoring dynamic
concentration changes in biological samples [8]. Principal
component analysis (PCA) is one of the popular clustering
multivariate tools used in both Raman and CARS microscopy
[16, 17]. PCA clusters spectra based on their similarities by
choosing basis sets that have the most variance and which
are linear combinations of the original spectral axes. PCA,
however, traditionally only provides classification based on
spectral similarities but not quantitative information.

Although the CARS signal increases with concentra-
tion, the presence of a nonresonant background (NRB)
that coherently combines with the Raman lineshape yields
nonlinear concentration dependence and is a major obstacle
for quantitative CARS analysis [12]. This may, however, be
overcome using phase-retrieval algorithms that extract (or
“retrieve”) the Raman lineshape [19, 20]. A recent study
uses a phase-retrieval algorithm and “nonnegative matrix
factorization” to perform quantitative CARS microscopy [6].

Vertex component analysis (VCA) is another candidate
for the quantitative analysis of hyperspectral CARS images.
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VCA is a spectral unmixing MVA algorithm initially devel-
oped for remote sensing to extract the “purest” spectra [21].
Each pixel in the hyperspectral image is expressed as a linear
combination of the pure spectral components (known as
endmembers) in an abundance fraction matrix that may be
further explored for quantitative analysis. The abundance
fraction matrix may also be used to form colormaps that aid
in image visualization.

In this paper, we compare a multimodal image that makes
use of single-frequency CARS, SHG, and TPEF modalities
to extract contrast information from a complex biomedical
tissue sample with an image generated from the VCA of
its associated CARS hyperspectral image data. We chose
the VCA algorithm (over PCA, e.g.) for two main reasons.
First, unlike principal components which do not necessarily
represent a spectroscopically identifiable object but are rather
chosen as the most statistically distinct basis sets, the VCA
endmembers represent identifiable spectral components and
are thus comparable to other vibrational spectra. Second, via
the abundance fraction matrix, it may be possible to extract
spectral concentration information in VCA. Such concen-
tration information may be useful towards expanding the
technique towards quantitative CARS microscopy studies.

2. Materials and Methods

2.1. Atherosclerotic Rabbit Aorta Tissue Sample Preparation.
We revisit an archival image data stack from a previous
multimodal CARS microscopy study of atherosclerotic rabbit
aorta tissue [22]. The main purpose of the previous study
was to investigate the use of multimodal imaging (SHG,
TPEE, and CARS) for the label-free diagnosis of luminal
atherosclerosis. Hyperspectral CARS data on the same image
also shows unique spectral information on regions with
contrasting multimodal signal. This stimulated our interest to
recreate a multimodal-like image using multivariate analysis
of the hyperspectral image stack alone and compare that to
the rich contrast information from the original multimodal
image.

The tissue sample used in this work was provided by the
National Research Council of Canada’s Institute of Biodi-
agnostics. A detailed description of the sample preparation
methodology, as well as the analysis of multimodal images
for this sample, is provided by Ko et al. in [22].

2.2. Optical Setup for Multimodal and Hyperspectral CARS
Imaging. Multimodal imaging was performed at the National
Research Council of Canada’s CARSLab, using the single
femtosecond oscillator light-source microscopy setup devel-
oped by Pegoraro et al. [23]. A schematic representation of
the experimental layout is shown in Figure 3. In short, a
60 fs transform-limited laser beam centered at ~800 nm is
split into two arms using a polarizing beamsplitter (PBS).
The first beam (path A) becomes the pump and probe
beam. The second beam (path B) generates a supercon-
tinuum light in a photonic crystal fiber (PCF). The red-
shifted part of the supercontinuum that ranges from ~950
to 1150 nm is used as the Stokes beam for the CARS process.
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FIGURE 2: (a) Multimodal image of an atherosclerotic rabbit aorta sample where SHG is shown in blue, TPEF is shown in green, and CARS at
2850 cm ™ is shown in red. (b) Grayscale image of the 2850 cm™" CARS channel shown as red in (a). The spectra on the right are representative
spectra from two individual bright (tissue) and dark (background) pixels in the image. Scale Bar: 30 ym.

An anti-Stokes signal is generated in the sample by collinearly
overlapping pump/probe and Stokes beams whose temporal-
overlap-dependent frequency difference corresponds to a
vibrational resonance. For instance, the CH-stretching vibra-
tional mode at ~2850 cm™" is probed by overlapping in time
the pump beam’s 800nm (12,500 cm™) light with the ~
1036 nm (9,650 cm™') part of the Stokes beam. The pump
beam is also used to concurrently stimulate other imaging
modalities such as SHG and TPEE The tightly focused beams
are raster scanned on the sample using galvo mirrors and
the signals are detected using photomultiplier tubes (PMTs).
The forward-propagating CARS and SHG signals are filtered
using a dichroic mirror and detected on separate PMTs. The
TPEF signal is detected in the backward (epi—) direction on
a built-in PMT of the Olympus Fluoview 300 microscope.

Spectral scanning is implemented by varying the tem-
poral delay of the pump/probe beam such that it over-
laps with different portions of the Stokes light, represented
schematically in Figure 3. The spectral resolution (~30 cm™")
is obtained by matching the chirps of the two pulses using
high dispersion SE-6 glass, in a process known as “spectral
focusing” [23-25]. Image processing was done with Image]
[26] and multivariate analysis with MATLAB.

2.3. Vertex Component Analysis of Hyperspectral CARS Image.
VCA is an algorithm for hyperspectral unmixing that was
developed in the field of remote sensing [21]. It assumes that
each spectrum in a hyperspectral data set X (of size m x n)

is a linear combination of “pure” spectra called endmembers.
That is,

X =AM +N, 1)

where M (size p x n) is the mixing matrix containing the
spectra of the endmembers. A (size m x p) is the abundance
matrix containing the relative amounts of each endmember
on each object in matrix X and N (size m x n) is the noise in
the signals. In the case of a hyperspectral CARS stack, m is the
number of pixels (or “objects”), n is the number of data points
(in frequency space) for each spectrum, and p is the number
of desired unique unmixed spectra (or “endmembers”).

The hyperspectral image taken of the atherosclerotic
rabbit aorta sample is a 256 x 256 pixel image with 272 data
points for each spectrum which translates to a 65,536 x 272
matrix. Each 256 x 256 image was collected in 0.58s, and
the 272-image hyperspectral stack acquisition required ~3
minutes. Thus, m is 65,536 pixels and # is 272 data points.
The value for p may be chosen based on the number of pure
chemical substances (or anticipated “unique” spectra) in the
sample. PCA itself can be used to suggest an appropriate value
for p based on how the data are clustered. We performed VCA
with p values of 3 and 4 based on the results of PCA. Details
of this are discussed in the next section.

Each of the m pixel objects is a vector in n-dimensional
space. Given a known value of p, the goal of VCA is to
determine the matrices M and A. VCA first extracts the p
endmember spectra and stores the associated endmember
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FIGURE 3: Optical setup of the multimodal/hyperspectral CARS microscopy system. A 60 fs laser beam centered at 800 nm is split into two
beams, one beam becomes the pump/probe at 800 nm and the other beam generates a supercontinuum using a photonic crystal fiber. The red
part of the supercontinuum (~950-1150 nm) becomes the “Stokes” beam. The two beams are chirp-matched using high dispersion SF6 glass
and they are overlapped in time and space. Spectral scanning is done by overlapping the pump with different portions of the “Stokes” beam
by delaying the arrival time of the pump/probe beam using a high-resolution linear stage. The two beams are sent to the microscope where

high speed galvo mirrors raster-scan the beam over the sample.

data points on matrix M. A vector u is selected such that
no object is orthogonal to it. All objects are projected unto
u and the maximum of the projection is the first endmember.
The succeeding endmembers are iteratively projected to a
subspace orthogonal to the span of the endmembers already
determined. This is done until the p endmembers are found.
The abundance fraction A is calculated by multiplying X by
M?, the pseudoinverse of M.

Dealing with the CARS signal dependence on concentra-
tion is a critical first step in implementing multivariate anal-
ysis algorithms as it affects the relative object distances in n-
dimensional space that may lead to their incorrect clustering
and classification. In our work, we normalized each spectrum
to its peak (maximum) value. Another, typically robust,
normalization procedure common in spectroscopic analysis

involves normalizing over the area, rather than simply over
the peak. Area normalization, however, does not seem to
work well in CARS hyperspectral data analysis because of the
NRB-distorted lineshape of the CARS spectrum compared to
a Raman spectrum [27].

All data analysis was performed using MATLAB 2013b
with the Statistical Toolbox Package. The calculated abun-
dance fractions were used to generate a pseudocolor image
using the RGB color scheme.

3. Results and Discussion

PCA is one of the more popular multivariate analysis tools
and it is useful to compare its performance with that of
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FIGURE 4: Principal component analysis of the hyperspectral CARS sample image. (a) Cumulative variance plot shows that only two principal
components (PCs) are needed to cover ~90% of the variance in the data set. No appreciable increase in the cumulative variance is observed
after PC2 as shown for PC3 to PC6. (b) Score plot of the first two principal components (PC1 and PC2). Each point on the plot corresponds

to one pixel in the image. (c) The color assignments on the retrieved PCA image depend on which quadrant the pixel object is located on the
score plot in (b). Scale Bar: 30 ym.

VCA. Furthermore, PCA can be used as an intermediate  sufficient to account for approximately 90% of the variance
step for determining the number of endmembers to input  in the data set. Further increases in the cumulative variance
in the VCA algorithm. Figure 4(a) shows the cumulative  areinsignificant after the second PC as shown by the relatively
variance plot for the PCA of the hyperspectral CARS image  flat profile of the cumulative variance plot from PC3 to PC6
of Figure 2(b). It shows that two principal components are ~ on the same figure. The number of PCs aids in determining



Journal of Spectroscopy

0.8

0.6

0.4

Intensity (a.u.)

0.2

2800
Wavenumber (cm™')

(c)

2600 3000

0.8 |

0.6

0.4 |

Intensity (a.u.)

0.2

2600 2800 3000

Wavenumber (cm™')

(d)

FIGURE 5: Vertex component analysis of atherosclerotic rabbit aorta tissue sample. (a) Retrieved VCA image with three endmembers. (b)
Retrieved VCA image with four endmembers. (¢, d) Endmember spectra for three- and four-endmember VCA, respectively. Scale Bar: 30 ym.

the number of endmembers for VCA. With two PCs, the
data can be visualized in a score plot where the number of
distinct clusters may suggest an appropriate value for p. For
our data set, as shown in Figure 4(b), there are no distinct
clusters so instead we arbitrarily based the color assignments
on the four quadrants defined by the two PCs. The color
assignments (denoted in Figure 4(b)) are then the basis for
the contrast shown in Figure 4(c). This PCA image already
appears somewhat similar to that of the multimodal image
of Figure 2(a). For example, the regions with strongest SHG
contrast, likely collagen-rich, are easily identified in the PCA
image as well. However, little-to-no distinction is made in the
PCA image between the lipid-rich regions that appear red
in the multimodal image and the green elastin-rich regions
that yield strong autofluorescence. The PCA image appears
considerably coarser than the multimodal image. This is
largely because of the loss of concentration information in
PCA.

Others have used PCA to extract representative spectra
by averaging all the spectra from pixels of the same cluster
in an effort to identify compositionally similar regions [16,
18]. However, the validity of this method is limited to
tightly clustered groups with distinctly identifiable bound-
aries. Because our 2-PC scatter plot, Figure 4(b), lacks any
distinct clustering, PCA does not allow for the extraction

of representative spectra [27]. Because this single cluster is
roughly centered at the origin, it motivates a 4-quadrant
PCA and thus perhaps a 4-endmember VCA. Looking at the
retrieved PCA image of Figure 4(c), however, the red and
black pixels are intermingled and are not on distinct regions
of the image. This further suggests that a 3-endmember
VCA implementation might be more effective in correctly
identifying the unique spectra. And so, we performed both
3- and 4-endmember analyses of the sample as shown in
Figure 5.

Figure 5(a) shows the retrieved VCA image for a 3-
endmember implementation. It is immediately evident upon
inspection that the VCA image shows a stark similarity to the
multimodal image in Figure 2(a). The brightest red regions
in the image match the strongest (blue) SHG regions in the
multimodal image and are thus presumed to be vibrational
signatures from collagen. In the VCA image, however, these
regions are slightly more extensive than the collagen imaged
by SHG in the multimodal image. This could be due to SHG’s
sensitivity to the molecular orientation and organization
of collagen, whereas CARS is more sensitive to molecular
density. This makes VCA of hyperspectral CARS imaging
complementary to the SHG technique. Figure 5(c) shows
the corresponding endmember spectra for the VCA image
automatically extracted from the CARS hyperspectral data
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of the atherosclerotic aorta sample. In a multimodal CARS
study of the same sample, Ko et al. highlighted similar spectra
to that extracted by VCA [22]. However, those spectra were
extracted (somewhat by trial and error) using the multimodal
image as a visual guide for suggested differences in tissue
character. Thus, the method was highly supervised and
potentially very time consuming. The unsupervised nature
of the VCA spectral extraction, however, may be used to
an advantage for hyperspectral CARS implementations that
do not usually have multimodal imaging capability, such as
multiplex CARS [2, 4, 28].

Figure 5(b) shows the retrieved VCA image for a 4-
endmember implementation with the corresponding four-
endmember spectra in Figure 5(d). It should be noted that
the VCA algorithm will always extract endmembers based on
the input value for p. However, care must be taken in judging
the validity of the results. For instance, in our sample, the
pixels corresponding to the “black” endmember spectrum in
Figure 5(d), highlighted by the white arrow, are confined in a
very small region on the sample, which suggests that it is not a
useful endmember spectrum. Furthermore, by inspection of
the 3-endmember spectra, it appears that the black spectrum
is mostly a particular (but nonspecific) combination of the
red and green endmember spectra. Thus, we conclude that
despite the misleading detail found in the 4-endmember VCA
image, the 3-endmember VCA analysis is a better comparator
to the multimodal image of Figure 2(a).

The calculated abundance fractions using the three end-
members in Figure 4(a) were used to generate the pseu-
docolor image in Figure 4(b). The values of the calculated
abundance fraction ranging from 0.0 to 1.0 are used as the
pixel values in Matlab’s RGB (red-green-blue) color scheme.
Thus, pixels with combinations of these three colors represent
spectra that combine two or three of the endmembers.
Compared with PCA, which only assigns one color for
each cluster, VCA assign color combinations based on the
spectra producing a pseudocolor image similar to the original
multimodal image.

The calculated abundance fraction also provides future
prospects for use in quantitative analysis. Using available
phase-retrieval algorithms [19, 20], the Raman lineshapes
could potentially be extracted by unmixing (in phase) the
nonresonant background and then used as input hyperspec-
tral data for VCA. It would also be interesting to compare
quantitative analysis using VCA with the recently developed
FSC? quantitative CARS method [6].

4. Conclusion

We succeeded in using an unsupervised VCA algorithm
to generate contrast from a hyperspectral CARS image of
an archival atherosclerotic rabbit aorta tissue sample that
is comparable to that obtained from multimodal nonlinear
optical microscopy. Furthermore, we discussed the potential
of the technique for quantitative chemical imaging with
the use of abundance ratios. The usefulness of VCA and
other multivariate analysis techniques is particularly strong in
powerful hyperspectral CARS techniques—such as multiplex

CARS—that do not traditionally allow for multimodal non-
linear optical operation.
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